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ABSTRACT: In the present paper a mapping is introduced namely generalize F-contraction mapping. A new
metric space namely ordered dualistic partial b-metric space is also introduced by adding additional
condition in dualistic partial metric space. On the basis of the same, some theorems are proved. This result
is more generalized the result of Nazam and Arsad (“On common fixed point theorems in dualistic partial

metric spaces”). An example is also given in the support of our result.
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. INTRODUCTION

Jungck [9] introduced the idea of compatible mapping
with the help of generalized weakly commuting
mappings. There are many authors [1, 2, 8, 16, 17, 21]
who proved many fixed point theorems for compatible
mappings under the contractive type conditions. In 1922,
the most important result of fixed point theory called
Banach Contraction Principle (BCP), was established by
Stefan Banach. This principle state that “if (N, d) is a
complete metric space and if A: N—N is a contraction
mapping that is d(Ar, As) <k d(r, s), whereke (0, 1) for
all r, se N than it has a unique fixed point “.One of such
extension of metric space is Partial Metric Space
introduced by Steve G Matthew [11] in 1922. In this
metric space the distance between the two elements m
and n is the distance of two elements is not necessarily
zero. This research not only generalized the existing
results of the metric space but also to establish new
results with applications (see [4, 5, 7, 14, 20, 22]).
Dualistic partial metric space was developed by Neill
[15] after more generalized form of Partial Metric Space.
This space connects quasi metric and dualistic partial
metric space. Neill studied many topological properties
of dualistic partial metric space. Fixed point theorem in
dualistic partial metric space was proposed by Valero et
al. [18] and proved the Banach fixed point theorem on
complete dualistic partial metric space. Subsequently,
Nazam et al. [3, 12, 13] introduced some fixed point
results with applications in the dualistic partial metric
space In 2014, one more idea of partial b-metric space
is given by S. Satish [6] in 2014 and proved BCP on this
space. Here, using generalize f-Contraction condition

Definition 2.3: [23, 24] Let Y # @. Define a mapping
d,:Y XY — [0,) if satisfies the following axioms:
v eY

(i) do(ry" 12" )1y =15

(ll) dp (r1 ",r2“)=dp (r2“,r1 “)

(iii) dly (r1"r2")=udp (1113 )+dp (ra "2 )]
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then prove fixed point theorem in ordered dualistic
partial b metric space for weakly compatible mapping.
This is an extension of work done by Muhammad
Nazam [19]. One example is given in the support of this
main result.

Il. PRELIMINARIES

Throughout this paper, collection of natural number is N,
R* denotes all positive real numbers and R denotes real
numbers. Neill [15] defined the dualistic partial metric
space by extending the range [0,) to(—«,«) in partial
metric space.

Definition 2.1 [15]: Let N # @, define a mapping D: N *
N - R satisfies the following axioms: vV r,,r, ", 73" € N
(i) ry “=r2“"4::D(r1 ",r‘]")TD(n "r2")=D(ry" 2"

(ii) D(r{",r1")=<D(ry :rz“)

(|||) D(r1",r2")=D(r2 ,r1 ) . . . )
(iv)D(r{",r2")+D(rg",r3)<D(r1",r3)+D(r5",12")

Then pair (N,D) is known as a dualistic partial metric
space.

Definition 2.2: [11]: Let Y # @. Define a mapping
dy,:Y XY - [0,) then d, is called Partial Metric if
satisfies the following property: Vr,"\ 1,13 € Y

(i) ri'=r"edy(ry' 11 )=dy(ri"r2 )= dp(r2'sr2")

(ll) dp(r1",r1 ")Sdp(ﬂ ",rzﬂ)

(|||) dp (r1 “,rzﬂ):dp(rzﬂ,ﬂ ")
(iv) do (1”12 ") S (11" 13 )+ (13", 12 ") -do (137.13")

The pair (X, d,) is known as partial metric space.
The pair (Y,d,,) is known as b-metric space.

Definition 2.3: [10] LetTand F are self-mappings
it T(r,") = F(ry") for somer,” € M, then r,"is known as
coincidence point and T,Fare said to be weakly
compatible if

T(r,) =FT(r,") = TF(r,") = F(r,") for somer," € M
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Example 1.2 Let M = Rand T,F: M — M be given by

F(m) = 10m — 9 andT(m)
=9m—8 forallme M

Then T, F are weakly compatible for m=1.

Proof: FT(m)=10T(m)—9
=10(9m—8)—9
=90m—-80-9
=90-89=1
And TF(m) = 9F(m) — 8
=9(10m —9) -8
=90m —81—-8
=90-89=1

=T, F are weakly compatible for m=1.
lll. MAIN RESULTS

Here, we shall prove the theorem in dualistic partial b-
metric space for the two weakly compatible mapping.

Definition 3.1: Let N # @, define a mapping D,:N * N -
R satisfies the following axioms: vV r, ", 1, 15" € N

(i) r4"=ry" =Dy (r4"11") =Dy (11" 12 ) =Dy (1212 )

(i)) Do (r1"r1")<Dp(r1"r2")

(i) Dy (ry".r2)=Dyp (12" r1")

() Do (r1".r2)+Do (13" r3")<u[ Do (r",r5")+ Do (r3 " r2)

Pair (N, Dy) is known as dualistic partial b-metric space
with coefficient u > 1.

Example 3.1: A function Dp: R x R >R by D, (£,", f2") =
max {f;", f>"} Clearly Dy, satisfies (Db1)—(Db4) and hence
Dy is a dualistic partial b-metric space on R.

Proof: Let coefficientu = 1 and (Y,D,) be a dualistic

partial b-metric space. Let f;", 2", fs* € Y be an arbitrary
point, then

(1) Dy(fi"f2") =max{fi".f,"}
Dy(fi . A =Dpy(i L) =D L) = ' =1f"
(@) Dp(fi" ;") =max{fy". f,"} = max {f,". "}
= Dy(f" A0
@) Dp(fi", f27) =max{fi’.f2"}
=max{f,", fi"}
= Dy(f". /")

(4) Dp(fi". 21) =max{f;".f,"}
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= max{f;’, f,"} + max{f*, f*} — max {f*, f*}
< max{f;", f*} + max{f*, "} — max {f*, f*}

< u[max{f;", f*} + max{f*, f,"} — max{f*, f*}]|[since u
>1

<u[max{f;", f*} + max{f", f,"}] — max{f", f"}

< u[Db(fl*rf*) + Db(f*er*)] - Db(f*rf*)
So (Y, Dy) is a dualistic partial b-metric space.
Lemma 3.1 If (Y, Dp) is a dualistic partial b-metric
space, then dp,:Y XY — R*defined by
dp,(d*,e*) = Dy(d*,e*) —Dp(d*,d*)  Vd'e'eY
is called a Quasi Metric on Y such that 7(D,) = t(Dp, ).
Proof: Consider d*,e* € Y.Then

dp,(d",e”) = Dp(d",e") —Dp(d",d”) is always non

negative because of D, (d*,d*) < D, (d*, e*).

Now, we have to check that dp, is actually a quasi-
metric on Y. Letd*,e*,f*€ Y. It is obvious that d* = e*
provides that dp, (d",e*) = Dp, (e*,d") = 0 Moreover, if
dp,(d",e") = Dp, (e*,d") = 0 then

Db(d*,e*) —Db(d*,d*) = Db(e*,d*) —Db(e*,e*) =0
Hence we obtain that d* = e*, since

D, (d*,e*) = Dp(d*,d*) = D, (e*,e*). Furthermore

dDb (d*,e") = Dy(d*,e*) — D,(d*,d")

< Dy(d*, f*) + Dp(f*, e )=Dp(f*, f*) — Dp(d*,d)
= dp, (d", ) + dp, (F", ") .

Finally we show that 7(D,) = 7(Dp, ). Indeed, let a ye
Y and ¢ > 0 and considerye Bdn,, (d*,e). Then

dp,(d",e") = Dy(d",e”) — Dy (d",d") < € and,
hence, D,(d*, e*) < e+ D,(d* d").
Consequently y € By, (r*,€) and 1(D,) = 7(Dp,)-

Conversely if y € Bp, (r*,e) we have, D,(d",e") < e+
D, (d*, d*)

Thus dp,(d",e") = Dp(d",e") = Dp(d*,d") <e , yE€
Bdn,, (d*,e) and (Dy,) = T(DDb)
Implies that (D) = t(Dp, ).
Remark: Let(Y,D,) is a dualistic partial b-metric space.
The function dp,:Y XY - R* is known as quasi metric
on Mdefined by
dp, a5 f)=D,d", f*) — Dy(d*,d")vd", f*eY

Moreover, if dp, is a dualistic quasi metric on Y,
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then d, = max{dp, (d",f*),dp, (f*,d")} defines a metric
onY.

Lemma 3.2

(1) If metric space(W, df”) is complete then dualistic
partial b-metric (W, D,)is also complete and vice versa.

(2) A point yeWw and a sequence {y,}lnenin
W such that {y,} converge to y, with respect to 7(d>?)
iff limn,m—mo Db (ynr ym) = Db (’V, )’) = limn—mo Db ()’, yn)

Proof: We claim that a {y,} be a Cauchy sequence in
(W, Dy)

Hence this is also Cauchy sequence in (W,df”).
Let {y,} is a Cauchy sequence in (W, Dy)

Then 3 a € R sit, given € > 0, there is nce N with
| Dy O ym) — a| <Svnm=n,.

Hence,  dp, O ¥m) = DoV, Ym) — Dy, V)
= | Dy Oy Ym) — @ + @ = Dy O y) |
< | Dy ym) — | + | &= Dy 3 |
<

+=-=¢€

N[ ™
N| ™

For all n,m =n.. Similarly we show dp, (Vs ym) <
€ foralln,m=n,.

We conclude that {y,} is a Cauchy sequence in (W,df”).

Implies we show that when (W,diJ b) is complete than (W,
Dy) is Complete

If {y,,} is a Cauchy sequence in (W,Dy),
Then also Cauchy sequence in (W,df”)

Suppose that y € N and the metric space (W,df”) is
complete such that lim,_. d2 (y,y,) = 0.

By lemma (3.1) we follow that{y,} is a convergent
sequence in (W,Dy).

Further we show that limy, ;e Dy (Vn, Ym) = Dp (¥, ¥).
Since {y,,} is Cauchy sequence in (W, D}) than
Jim Dy (v, yn) = Dy (7, 7)

Consider € > 0 then 3 ny € N such that d*(y,y,) <
2 whenever n = ng

Thus

| Dy (y:Y)-Di (YY) S| Dy (v:)-Do(v:y,) | +

Chauhan & Manju
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| Dy (¥:¥n)-Do(¥n-¥n) |
R GORICD
< (1)<
Whenever n 2 ng
=(W, Dy) is complete.

Next we show that every Cauchy sequence {y,} in
(N, df”) be a Cauchy sequence in (W,Dy,). Lete = 1; Then
3 no€ N such that D, (y,, yi) < %V nm=n,

Since

do, (VY ) +D6(YsYn)=0p, (Vg ¥ ) +0, (Vi Yoy )

Then

| Db(yn’yn) | =dDb (yno ’yn) +dDb (yno’yno) _an (yn’yno)

Consequently the sequence (Dy, (¥, yn))n is restricted in
R, and consequently so there is y in R s.t

a subsequence (D (ynk,ynk)k is convergent toy, i.e.

1M co Dy (Vg Yy, ) = -

It remains to show that

(Dp W, Yu))n be a Cauchy sequence in R.

Since {y,} be a Cauchy sequence in (W,df”), given € >
0, an:€ N s.t.d> (¥, Yim) <<vn, m 2 n.. Thus, for all n,
m 2 ne,

Db(yn ’yn)=an (ym ’yn)+Db (ym ’ym)_dDb (yn ’ym)'

Therefore
limp,_,co Dp (Y, Y) = ¥

Whereas, | Dy ) =¥ | = | Dy ) —
DV ) + Dy Gy ) = ¥ |

< Db(ynrym) + |Db(ynryn) _yl <evnmz2n.

Hence limy ;.0 Dp (n ¥m) =y and {y,} be a Cauchy
sequence in (W, Dy).

Then {y,} be a Cauchy sequence in (W,D;), and so it is
convergent to a point y € W with

limp,e0 Dy (v, ¥0) = Dp 0, y) = 1My 0 Dpy (Vs Y-
Given € > 0, then an;e N
such that D, (y, y,) — D, (y,¥) < €
And Dy (y,¥) = Dyp(yn, yn) < €
Whenever n = ng As a consequence we have
dp, @ ¥n) =Dy, yn) — Dy(1,¥) <€,

And
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dp, O ¥) = Dy (¥, %) — Dy O, Y)

< | Dy, 3) = Do, %) + Dy, 3) — Dy ¥a) | < 2€

whenever n > n.. Therefore (W,d"") is complete.

Finally,
limn—>oo d?b (yr yn) = 0iff limn,m—mo Dy, (ynrym) =
Dyp(y,y) = limy_ Dy (v, ¥)-

Let a mapping W:Y — Y defined on Y and (Y, <) be an
ordered set to satisfy the property y* < W(y*) V y*eY

Then W is known as dominating mapping.

DEFINITION 3.2: Let T, F be two self mappings and
(M,Dp)dualistic partial b-metric space. We assume the

mapping T,F a generalize F- contraction if 38 € [Oﬂ
with constant u 21 s.t.

|Dy(TGx), T(y* ))I

pm LA )]

IDb(F<y )T ))I

VX yeM.
Theorem 3.1

Let W, V: M—M are weakly compatible self mapping
and (M, Dy) a dualistic partial b-metric space such that

1) W(M) <V (M)
2) W is a generalize F- contraction
Then W and V have a Unique Common Fixed point.
Proof: Let we start with kje M
Since W(M) c V(M)
choose kje M
stW(ky) = V(D)
W(ki) =V (k3)
Let W(ks) = Wk;_1)
AndV(ks) #V(k;,,) Vn €N

By the equation (1), we have

oo

(k). Wik,,.)|
o) I )|

<Bmax| Dy (V(k) Wik))| |
| |Do( Ve, ) Wik, )||"(u—)|J

Chauhan & Manju
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P Do Wik ). W(k) )| | Do(Weke). Wik, )| ]
o | DWWk
sy )LL)

If max
| D (W), W

oW

)| [Po(Wi) weks., )
(WK, ) e )

= [po(Wi). Wik, )|

Then,
[Dy (W (k3), W (k5 1)) 1S B 1Dy (W (kes), W (k311))

which is contradiction.

If max
leu(W(k ()] Do (W) Wik )IJ
: )|
oo mﬂ* : W
_ Dy (Wks_ WK
u
Then

1Dy (W (U)W (ki )| s [P0 aiso u 2 1]
which is contradiction

o |12 (W] Do) Wes,. )
w25
||Db(W(k;_1),W(k;))||
hus

1Dy (W (k) W (ks41))| =B 1Dy (W (ks_1), W (k)
By continuing in this way

|Db( ks+1 )| s

pe |Db( )W(k1))| vseN )

Now|Db(W(k;),W(k;))|

If max

|Do (V). V() . |Db(W(k;),W(k;))| :
)W

|Du (Vi) Wikg)) | [2s(v1s
1D, Wk, W] [for uz1] ’

1Dy (W (k) W (k)| <B Dy (W (ks_1), W (k:))I
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< B°IDy (W k), W (k1))I
Thus we have
[Dp (W (k), W(ks )| < B5ID, (W ko), W (ki) (3)

By equation (1), (2) and (3), we get
| Do (W) Wik, )|

s| Db(W(k;),W(k;+1))|— |Db(W(k;),W(k;))|

S Dy (W (ks), W (ksy1)) | + 1Dy (W (k) W (k)|

IN

BEIDy (W (kg), W (kD) + B Dy (W (kg), W (kD)
2 B¥1Dy (W (kg), W (k1))
s 2%

And dp, (W (k3 1), W (ksy2)) S 2 B**y

IN

For a fixed natural number g1, we have
dp, (W(kisq,-1), W (kisq))S 28507y, wseN

Now using by triangular inequality for dp, Let s and t are
two +veinteger such that t > s,than

do, (W(k;),W(k;mh)) sdDb(W(k;),W(k;+1))+

*

o, (W(Kg, 1) Wk o) )+, (W(Ky 1) Wik, )

s+1
< 2B+ B4 e + BT ]
Soput s+q, =t

dp, WD, W (kD) <2y 7 4

By interchanging s and t, we have

|dp, (W (kss1), W (k)|S|dp, (W (ksy 1), W (k)|
1Dy (W (kzy1), W (ks 1))

S|dp, W kg r), W (R |+ 1Dy W (k1) W (ki)
SBS 1D, (W (), W (ko) + - Bo+21D, (W (k) W (k)
SyA+p)pe

=dp, (Wi ), W (ki) <y (1+B) B+

Now using by triangular inequality for d,, Lets and t are
two +ve integer such that t > s, than

o, (W(ky,q, ) Wiky) ) <do, (Wik;,q )W(k,q 1)+
-+dlp, (W(k ). W(ky))
<y A+PIFTET 4 - - - - + B°]

<y +/?)£
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o, WD, W) Sy (1+ ) £ (5)

Using (3.4) and (3.5),

a5, (W), W (kD)) < max {2y ffﬁ,y a+p L J

(W (k)}sen in (M, df,b) is a Cauchy sequence.

Since (M, D,,) is a complete dualistic partial b —
metric space,

By lemma 3.2,(M, dj, ) is as well complete.
Then 3 an element ke W(M) c M

Such that lim,_e d§ (W(k$), k) = 0
SYNEFRH B g, W (k)

Dy(k, k) = limy,_o D, (W (kD) k) =
limy, 10 Dy (W (K7), W (k5)) = 0 (6

0=
)
By equation (3),

lim D, (W (ki), W (ks)) = 0
And equation (5),

lim Dy (W (k3), W () = 0
By equation (6), we get
Dy (k, k) = limpe Dy (W(k2), k) = 0
As ke W(M) c V(M),3 ke M
Such that k = (V(k,)) and equation (3.7)

Dy(V(ky),V (k) =0

Also 0 < dp, (V(ky), W(ky)) = Dy(V(ky), W (ky)) —
Dy(V(k),V (k1))

Dy (V Uey), W (ky))

By the equation (1), we have

| Dy (V) W (k) | = | Dpy(W (ki) W(ky) |
{ | D, (Vi) W (kD) |, | Dy (W ki), W (ky)) I,}
< fmax.

D, (V(ks), W (k;
|Db(V(k1),W(k1))|'| ,(V( l)t k)|

{ | D, (W (k). V(D) |, | Dy(W(k), W (k) | }
< pmax.

| Dy (Gl W (k) . AUCREC |

Taking limit n — oo

| D, (V(k), W (k) | < B| Dy (Ve W (k) |
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Implies
Dy(V(k), W(k)) = 0 = D, (V(ky),V(K)) =
Dy(W k), W (ky)).

that

By axioms(Db1),
=V(k) = W(ky)

Thus
k = V(k,) = W(k,) is a coincidence point of W and V.

Since W and V are weakly compatible mapping k = V (k,)
=W(k,)

>W (k) =WV(k) =VW(k)) =V (k)
By equation (1),
| Dy (W (ky), W () |

| D, (V(k), V() |, | Dp(W k), W (H)) |,

< .
Bmax |0y (VO W) |, | Db(V(k1l)L, W(ky))|
<B| Dy(W(), W(K)) |
< B D (W(k), W(K))|
Thus Dy (W k), W (D) = 0 = Dy (W ey), W (k1)) =

Dy(W(k), W (k)
By axioms (Db1),
=>W(k,) = W(k)
Hence k=wW(ky) =WwW(k)

= kis common fixed point of W and V.

Uniqueness:
| D, (k@) | =| Do(W(K).W(Q)|

(1Po(VEO. V@) .| Ds(WCO,W(@)] )
| Do(V(@). W), }

<B maxi
u

| Du(V(R,WK) |

<BlDy(kg) |
=Dt g)| =0
=2k=g
Hence k has a common fixed point of W and V.

Next we are presenting the Example of complete
dualistic partial-metric space.

Example 3.2: Let N = andD,:N x N - N by D,(k,g) =
max{k, g}V k,g

and define the mapping T,F:N — N by

Chauhan & Manju
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kS kS
T(k) = - and F(k) = 3 VkeN

Then(N, D) is a complete dualistic partial b —
metric space

Proof:[%l,o] =T(k) c F(k) = [‘?1,0]
F, Tareweakly compatible : T(k) = T(F(k)) = F(T(k)) =

F(k)
By (5)
T(F(k))=T<?>=(i7)=m=0fOTk=0

7)= "3 T7xg0fork=0

and F(T(k)) = F ("_5> _ (ki) k®

Implies that T (F(k)) = F(T(k))

F,T are weakly compatible mapping for coincidence
point k=0

Without loss of generality letk > g and

Thus

5 5 5

Dy (1), T(g))| = [max. "797 _|E

kS 5 k5

|Dy(F(K), F(9))| = |max. ?,‘% I

_ g° g°| _|9°

|Dy (F(9), T(9))| = |max. i =

D, (T(k), F(K))| = k| _ |k
|Dy(T(K), F(K))| = |max. —=5il= 5

For generalize f-contraction mapping:

Do (T, ()|

|D6 (F(K),F(@))], Dy (TG, T(®))),
<p max.[ D, (F(2),T(2)], l
L u |
kS kS| |kS| |g5| 1|k®
adll S/?max.[? =17 7]Sinceu21
ks 5
- S[?max.[7]vkeN

Therefore F-contraction condition is hold and 8 = 1.

Definition 3.3: Let W and V be two self-mapping and
dualistic partial b-metric space (M,D,). We say the
mapping W, V a generalize F- contraction with constant
u=1 such that

|D,(W(), W) < alDp(V(x), W(x))|
+b|D, (V) W)
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te (125 (V) w3)| +10p (W ) W )]

u

(8)

V x,ye M,wherea,b,c =2 0anda+b+2c <1

Theorem 3.2: Let W, V: M—M weakly compatible self-
mappings and (M, Dy) a dualistic partial b-metric space
such that

1) WM) c V(M)

2) W is a generalize F- contraction

Then W and V have a Unique Common Fixed point.
Proof: Let we start with kge M

SincewW (M) € V(M)

choose kie M

such that W (kg) = V(k;)

Continue in similar way
W (ks) =V (ks+1)
If W(ks) =V (ky_1) =V (ks) for same seN

Then u = W(ky) =V(k;) is a coincidence point of W and
V.

Let W(k:) = Wki_;)
AndV(kD) = V(ki,,) VYn €N
By the equation (8), we have

|06 (Wike). W(ks.) )|

< 2], (V(S).W0S))] 45Dy (VK WG )|

C[|Db (V(ke) W(kes1) )| +1Do (W(ke ) W(KS)) |

u

< alDy (W (ki_y), Wk + b|Dy(W k), W (kiyy))| +

LD (W ki), W Gl )] + [0 (W), WD)
u
< alDy(W(k;_1), W (k)| + b|Dy (W (k). W (ki) +

ul| Dy (W (ks-), W (ks ))I + [y (W), W (ki)

_IDb(W(k;),W(k;))l I LAULCONACH)] |
u

u
< alDpy(W(ki_1), W (k)| + b|Dy (W (k3), W (kjy))| +
c[IDy(W(k;_), WD + Dy (W (k) W (ki)

(1-b-c) | D (Wi(k), W(ks.1) )| 58] Do (Wlkke-1), W(ks)|
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+c|Db(W(k;-1 JW(Ks))|

[Py (W (), W (k3 ))| < 7= = 1P (W Chs0), W (KD

< alDp(W(ks_1), W (k)|
and so on,
< a"|Dy(W(kg), W (kD)) 9)
ere a = anda+b+2c<1

Let kseM then the, we have

|Dy(W (K3, W(KD))| <
b|Dy(V(k3), W (k)|

al Dy (V(ED, W kD) +

c (105 (V(k), W (kD)| + [ Dy (W (), W ()]
u

Mﬁk%l)Dl_l({;V(Q%%q),W(k;))l +b|Dy (W (ks_1), W (k)| +

c (105 (W (ks_1), W (ki) + [ Dy (W (k) W (k)]
u

< alDy(W(k;_1), W(k)| + bIDy(W (v 1), W ()| +

ul|Dy (W (ks_1), W (k)| + 1Dy (W (ks_), W (k)]

u
_ 1Dy Wlks— ) W ko)l | Dy (W (k) W (k)| |
u u

< alD, (W(ki_y), W (k)| + BID, (W (ks_y), W (K3
+ c[1D (W (kz_y), W ()| + [ Dy (W (R, W (k)]
(1-0) | Dy (Wike) W(k:) )| <al D (W(ks 1), W(ke) |+

b|Dp (Wi(ks-1),Wi(ks))|+¢|Dp (W(ke.1). Wi(ks))|

Dy (W ki), W (k)|

1Dy (W (), W (k3))| < =
< alDy (W (k3-1), W (k)

and soon, < a™|D,(W(ky), W (k)| (10)

a+b+c

Where a = —— - anda+b+2c<1

Now,
= Db (W) W(ke))|
- |Ds (W) W(KS))|
< 10y (WK, W (ki) |+ Dy (W (KD, W ()|
< @ |D, (W), WD) | + @0, (W (), W ()|
< 2a"|D, (W k), W (k)|

For a fixed natural number g1, we have
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dp, (W g, 1) W (kirg,))S2a5 0171y v seN

wherey = [D, (W), WGD)|

Now using by triangular inequality for dp, Lets and t are
two +ve integer such that t > s, than

dp, (W(ks),W(kS+OI1 ) sdDb(W(ks),W(ks+1 ) +
oy (WK, 1) Wk, o) J—+dp, (Wi g ). Wik,
<2 y[as+ oSt 4 - + 05T

Soput s+gq, =t

o, (Wi(k).W(k)) 27 2= (11)

By interchanging s and t, we have

|ao, (Wikg, 1), Wikg) ) |<]do, (Wike, ). Wik) )|
—1Dp W (kg y1), W (ks 1))]
S |dp, (W (k31a), WD + 1Dy (W (k3n), W (k510)
S |D,(W(kD), W (k)| + D, (W (K1), W (ko))
<sy(l+a)a’

=dp, (W(knez ) W(kns1)) <v (1+a) a**'Now  using
by triangular inequality for dp, Let s and t are two +ve
integer such that t > s, than

o, (W(ky,q, ) Wiky) ) <do, (Wik;,q )W(k,q 1)+

—-+dlp, (W(kg, 1) W(k,))

s-1 S

<yA+a)[et T+ ————— + af]

aS
<y(l+a)—

1
dp, W(k), W) <y (1+a) = (12)

Using (11) and (12),

a’ a’
a5, W (), W (kD) < maxfey T— v 1+ @) 1)

= (W(ED}sen in (M, df,b) is a Cauchy sequence.

Since(M, Dy) is a complete dualistic partial b —
metric space,

By lemma 3.2,(M, d3, ) is as well complete.
Then 3 an element ke W (M) c M

Such that lim,,_,., d§, (W (k),k) = 0

By lemma 3.2, we get

Dy(k, k) = limp,_e D, (W (K2, k) = 0 =

limy, oo D (W (), W (k) = 0 (13)
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By equation (10),
lim D, (W (k), W (k) = 0
And equation (3.12),
lim Dy (W (k3), W (ki) = 0
By equation (13)we get
Dy (k, k) = lim,_,o, D, (W(k2), k) = 0 (14)
as ke W(M) c V(M),3 kye M
such that k = (V(k,)) and equation (14)
Dy(V(k),V(k)) =0
Also  0=dp, (V(k¢),W(k¢))
=Dy (V(k1),W(k1))-Dp(V(ky),V(ky))
= Dp(V(ky), W(ky))
By the equation (8), we have
| D (V (ki) W) | = [ Do (W (K3, W (k) |

< a|Dy V(D W (kD)| + b|Dy(V(k), W (k)| +

. [|D (VD W (k)| + | Dy (W (k) W (k)| ]
S

< a|Dy (W ki_y), W(k)| + b| Dy (V (e, W (w1)|

[1D6 (W Ues_1), W (k)| + | Dy (W (D, W (k)]
S

+c

Taking limit n —» oo

| D, (V) W(k)) | < b|D,(V(ky),W(ky)) |

Implies that

Db(V(k1)rW(k1)) =0= Db(V(kl)rV(kl)) =
Dy(W(ky), W (ky)).

By axioms (Db1),
=V(k) = W(k,)

Thus
and V.

k =V(k,) = W(k,)is a coincidence point of W
SinceW and V are weakly compatible mapping k =

V(k) = W(k,)

=>W (k) =WV (k) =VW(k,) =V(k)

By equation (8),

| Do(W(k),W())| < a|Dy(V(ki),W(ky))| +b|Dp(V(K),WK))|

[1D5 (V(k),W()) | +]Dp (W(ky), W(ky)]]
S

+C
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< b| D,(W(k), W () |

<b| D,(W(k), W)

Thus
Dy (W(ky), W(K))=0=Dp(W(k;),W(k1))=Dp(W(K),W(K))

By axioms(Db1),
=>W(k,) = W(k)
Hence k=W(ky) =W(k)

Similarly V(k) =k

That is k is a common fixed point of W and V.
Example 3.3: Assume thatY = [—-1,0]

and D,:Y xY - Y by D, (g,h) = max.{g, h} Vg, heY

Then(Y,D,) is a complete dualistic partial b —
metric space and define the mapping

T,F:Y =Y by

g° g°
T(g) = - and F(g) = 3 vgeY

Proof:[_71,0] =T(g) € F(g) = [‘?1,0]

F,T are weakly
F(T(g)) = F(g)

compatible  :T(g) =T(F(g)) =

—

Than T(F(g)) = T(g?s) - 1) g

. =m=0forg=0
And F(T(g))zF(g—:)z@=7i3=0forg=0

Implies that  T(F(g)) = F(T(g))

F,T are weakly compatible mapping for coincidence
point g =0

Without loss of generality we can assume that g > h
and

Thus

gS hS gs
|Db(T(g)rT(h))|= max 7'7 = 7
_ g° 92| _|9°
|D,(F(9).T(9))| = |max S 7il= 5
h> RS h5
|Dy(F(R), T())| = |max > =il=
5 5 5

g’ h
|D,(F(9), T(W)| = |max Sl =l
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g

|D,(T(9), T(9)] = 7

maxg—s‘g—5
77

For generalize f-contraction mapping:

|Dy(T(@), T(W)|= a|Dy (F(9),T(@))|+b| Dy (F(h), T(h)|

Do (F(@),T(h))|+|De(T(@),T(@)l]

S

+c[

Rl e
7 7

®lL e
s

s=>1anda,b,c =0

5

g h®
7

7

g

<
_a7

+b +c

Therefore generalize F-contraction condition is hold.
IV.CONCLUSION

In the above proved fixed point theorems on ordered
dualistic partial b-metric space, generalize f-contraction
mapping is used. This result is generalized the result of
Nazam and Arshad [24] and is an extension of their
result.

Acknowledgement: We convey our sincere thanks to
learned referee.
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